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INTRODUCTION 
 Smoothing filters are at the very core of what we technical analysts do.  All 
technicians are familiar with Simple Moving Averages, Exponential Moving Averages, 
and maybe even weighted moving averages.  It is surprising that the selection of filter 
types used by analysts is relatively sparse.  I think this is partially due to using 
techniques the way they have always been done, hailing back to the days when 
analysis was done by hand or on a calculator.  However, today with the power of 
modern computers there is no reason why more sophisticated filters cannot be 
employed.  Once these filters are functionally understood they are no more difficult to 
use than simple averages and can possibly have a much greater payback in efficient 
indicators and trading systems. 
 In this article we will examine filters from the perspective of a signal analyst, 
rather than a trader.  This will highlight the fundamental differences between simple 
moving averages and exponential moving averages.  Linear system theory will be used 
to formulate the solution to the problems.  With this understanding, higher order 
Butterworth Filters are introduced because of their enhanced payoff when considering 
the lag versus smoothing tradeoffs. 
 
TRANSFORMS 
 Transforms are mathematical techniques where the transform operator is 
understood to stand for a calculus derivative.  This approach enables us to solve very 
complicated differential equations using relatively simple algebra.  Fourier Transforms 
are used to solve for steady state frequency conditions.  The Fourier Transform 
operator is j, where =2F is the angular frequency.  The LaPlace Transform operator 
is “s”, and is used to solve for transient conditions.  The solutions to problems involving 
transform arithmetic can be pictured in the complex plane.  As we have previously 
described, the complex plane extends to plus and minus infinity horizontally along the 
“real” axis and extends to plus and minus infinity vertically along the “imaginary” axis.  
Just to add to the confusion, the imaginary axis corresponds to physically realizable 
frequencies in the case of Fourier Transforms.  
 Transforms are not necessarily limited to continuous functions.  In trading we use 
sampled data.  There is only one closing price per day.  Therefore, there is a discrete 
jump in our sampled data as we go from bar to bar.  This is true no matter how small the 
steps are, right down to the tick level.  Z Transforms are used for sampled data 
systems, where difference equations must be used rather than differential equations.  
Although the distinction between differential equations and difference equations seem 
fairly subtle, the impact on interpretation is profound.  It turns out that realizable 
frequencies in Z Transforms fall on a unit circle.  What was the left half infinite complex 
plane maps inside this circle while the right half infinite complex plane falls outside.  The 
operator for Z Transforms is Z-1= 1/Z , and this operator means one unit of delay. 
 “So what”, I hear you say.  The use of Z transforms enables us to solve 
complicated filter equations using simple algebra.  It is exactly this feature that helps us 
better comprehend what is going on.     
 



TRANSFER FUNCTIONS 
 In linear system theory it is common to describe the output signal as the product 
of the input signal times the transfer response of the circuit.  Let’s look at what that 
means for an Exponential Moving Average (EMA).  Using EasyLanguage notation for 
lags, the EMA is written as: 
 f = *g + (1-)*f[1] 
  where f  = output 
   g = input 
Using Z Transform notation, this equation becomes: 
 f = *g + (1-)*f* Z-1 

Solving for the output in terms of the input, we obtain: 
 f*(1 – (1-) Z-1) = *g 
 f = ( / (1 – (1-) Z-1))*g 
This equation is an expression of the signal output of filter in terms of the data input to 
the filter times the “Transfer Response” of the filter itself.  Therefore, the transfer 
response of an Exponential Moving Average Filter is: 
 H(z) =  / (1 – (1-) Z-1) 
 
EXPONENTIAL MOVING AVERAGE CHARACTERISTICS 
 What if Z = (1-) ?  In this case the denominator of the Transfer Response would 
go to zero and the Transfer Response itself would go to infinity.  This is called a “pole” 
in the transfer response, and denotes a critical characteristic.  A general visualization of 
the transfer response of a generalized circuit is to think of the complex plane looking like 
a circus tent.  Location of the tent poles is easily pictured.  Of course, Z can never have 
the value of (1-) because Z is limited to discrete integer steps.  Therefore, the transfer 
response is stabile and can never “blow up” (unless you make a typographical error in 
entering your code).  In any event, an exponential moving average only has one pole in 
its response, and therefore is called a single pole low pass filter.  It passes low 
frequencies and attenuates high frequencies. 
 It turns out that there is a mapping between poles of continuous functions and 
poles of difference functions.  Without proof, this relationship is that if the continuous 
function has a pole at  = -a, the difference function will have a pole at Z = eaT.  In our 
case the sampling period can be considered unity (one day, for example) because the 
cycle periods we use are relative to the sample period (a 12 day cycle, for example).  
Using the relationships of the poles, we can solve for the critical frequency of an 
exponential moving average.  Since  = 2/P , where P is the period of the critical 
frequency, we have the relationship: 
 (1-) = e-2/P 
Taking the natural logarithm of both sides of this equation and solving for the critical 
period, we have: 
 ln(1-)  = -2 P 
 P = -2/ ln(1-) 
 
For example, if we use a = .27 in an exponential moving average, we can expect cycle 
periods short than 20 bars to be attenuated.  That is, a 20 bar cycle is the critical period 
for this EMA, where the filter output is approximately .707 times the input signal 
amplitude.  For a single pole filter, the output amplitude is cut in half each time the 
signal period is cut in half relative to the critical period.  A 10 bar cycle output would be 



reduced to .35 of its input amplitude and a 5 bar cycle output would be reduced to .177 
of its input amplitude. 
We have now fully characterized an EMA.  Its frequency response is defined in terms of 
 in the previous paragraph.  In a previous article1 the time lag was derived as 
Lag = (1-)/. 
An impulse input into an EMA at any time in the past will continue to appear in the 
output (albeit very small as time goes on) into the infinite future.  This is because in 
each iteration of the calculation a little piece of the previous calculation is retained.  
Thus it is called an Infinite Impulse Response (IIR) filter.  All filters having poles in their 
transfer responses are IIR filters. 
 
SIMPLE MOVING AVERAGE CHARACTERISTICS 
 A Simple Moving Average (SMA) filter is not an IIR filter.  The simple moving 
average has an observation window whose length can be selected.  An impulse data 
into this filter will appear at its output only as long as the impulse is contained within the 
window length.  Therefore, an SMA falls in the category of a Finite Impulse Response 
(FIR) filter.  Let’s examine the transfer response of a SMA. 
 A 5 period SMA can be written in EasyLanguage notation as: 
 f = (g + a1*g[1] + a2*g[2] + a3*g[3] + a4*g[4] ) / 5 
In Z Transform notation this becomes: 
 f = (g/5)*(1 + a1*Z-1 + a2*Z-2 + a3*Z-3 + a4*Z-4 ) 
There are no poles in this transfer response.  Instead, we have a polynomial of order 4 
in terms of Z.  According to the fundamental theorem of algebra, any Nth order 
polynomial can be factored into N zeros.  These are called zeros of the polynomial, 
surprisingly enough. 
 Thus, a simple moving average filter is a FIR and its transfer response is an all-
zero response.  The time delay of an all-zero FIR filter is the “center of gravity” of the 
weighting functions (the coefficients of the polynomial).  The weighting functions a 
commonly symmetrical with respect to the center of the observation window, and the 
resulting lag from such filters is half the observation window width.  If a high degree of 
smoothing is desired the lag can be substantial. 
 Another use of transforms is that they enable descriptions of the transfer 
responses to be made in either the time domain or in the frequency domain.  For 
example, the time domain response of a simple average is a rectangle.  The Fourier 
Transform of the rectangle is a Sin(X)/X pattern.  That is, the frequency response of a 
simple average is Sin(X)/X.  The first zero of the Sin(X)/X pattern occurs when X=.  We 
know that we get a zero in the transfer response of a simple average when the length of 
the average is exactly equal to the Period of the cycle being filtered because in taking 
the average over the full cycle there are as many points above the mean as below it.  
As a result, the average for that cycle is zero.  An easy to remember approximation is 
that the simple moving average critical Period is twice the observation window length.   
All longer cycles are passed through the simple moving average with very little 
attenuation.  
 
MULTIPOLE FILTERS 
 An EMA is a one pole IIR filter.  The rule of thumb is that the attenuation is 
doubled each time the filtered cycle period is halved relative to the critical frequency of 
the filter.  Stated another way, the attenuation increases 6 dB per octave.  If we have 
                                            
1 John Ehlers, “Signal Analysis Concepts” 



well designed filter, the attenuation rule can be generalized to be 6 dB per octave per 
pole.  Thus, a two pole filter having a critical period of 20 bars will attenuate 10 bar 
cycles to .25 of the input amplitude and 5 bar cycles to .0625 of the input amplitude.  A 
three pole filter having a critical period of 20 bars will attenuate a 10 bar cycles to .125 
of the input amplitude and 5 bar cycles to .0156 of the input amplitude.  The relative 
filter transfer responses are shown in Figure 1. 

Think of that circus tent analogy, and attenuation as a marble rolling along the 
surface of the tent.  If we add more poles to the tent we can increase the slope of the 
surface to get the marble to roll faster.  We could theoretically continue to add poles to 
our filter design without limit to create a “stonewall” filter response at the critical period.  
But there is a penalty for adding poles.  That penalty is lag. 
 There are a host of multipole filter designs available.  The relative advantages of 
these different filter types is limited for us traders because we can practically use only a 
few poles in the response before the lag penalty becomes too severe.  One of the more 
common multipole filter responses is called a Butterworth filter.  The lag of Butterworth 
filters can be computed from: 
 Lag = N*P / 2   
  Where N = number of poles in the filter 
    P = critical period of the filter 
 
The equations for a 2 pole Butterworth filter in EasyLanguage notation are: 
a = ExpValue(-1.414*3.14159/P; 
b = 2*a*Cosine(1.414*180/P); 
f = b*f[1] – a*a*f[2] +((1 – b + a*a)/4)*(g + 2*g[1] + g[2]); 
 where P = critical period of the 2 pole filter 
 
The equations for a 3 pole Butterworth filter in EasyLanguage notation are: 
a = ExpValue(-3.14159 / P); 
b = 2*a*Cosine(1.738*180 / P); 
c = a*a; 
f = (b + c)*f[1] - (c + b*c)*f[2] + c*c*f[3] + ((1 - b + c)*(1 - c) /8)*(g + 3*g[1] + 3*g[2] + 
g[3]); 
 where P = critical period of the 3 pole filter. 
 
The merits of the  higher order filters are compared in Figures 2 and 3.  Clearly, the 
higher order filters offer greater fidelity when the lag is held constant. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.  Relative Attenuation of Multipole Filters 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.  Responses for 1, 2, and 3 Pole Filters having a 14 Bar Critical Period.  
Increasing the number of poles increases the lag for a common critical Period. 
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Figure 3.  One and Three Pole filter responses when equalized for a 2 Bar Lag.  The 
higher order filter has greater fidelity when the lag is held constant.  
 
 
BUTTERWORTH FILTER TABLES 
 
It is often easier to go to a lookup table to get filter coefficients rather than uniquely 
calculate the coefficients each time they are used.  In the following tables, the notation 
is that B is used with the price data and A is used with the previously calculated filter 
output [N] bars ago.  I hope these tables make it easier to use higher order filters. 
 
Two Pole      
Period B[0] B[1] B[2] A[1] A[2] 

2 0.285784 0.571568 0.285784 -0.131366 -0.011770 
4 0.203973 0.407946 0.203973 0.292597 -0.108489 
6 0.130825 0.261650 0.130825 0.704171 -0.227470 
8 0.088501 0.177002 0.088501 0.975372 -0.329377 

10 0.063284 0.126567 0.063284 1.158161 -0.411296 
12 0.047322 0.094643 0.047322 1.287652 -0.476938 
14 0.036654 0.073308 0.036654 1.383531 -0.530147 
16 0.029198 0.058397 0.029198 1.457120 -0.573914 
18 0.023793 0.047586 0.023793 1.515266 -0.610438 
20 0.019754 0.039507 0.019754 1.562309 -0.641324 
22 0.016658 0.033317 0.016658 1.601119 -0.667753 
24 0.014235 0.028470 0.014235 1.633667 -0.690607 
26 0.012303 0.024607 0.012303 1.661342 -0.710555 
28 0.010739 0.021477 0.010739 1.685157 -0.728112 
30 0.009454 0.018908 0.009454 1.705862 -0.743678 
32 0.008386 0.016773 0.008386 1.724025 -0.757571 
34 0.007490 0.014980 0.007490 1.740086 -0.770045 
36 0.006729 0.013459 0.006729 1.754388 -0.781305 
38 0.006079 0.012158 0.006079 1.767204 -0.791520 
40 0.005518 0.011037 0.005518 1.778753 -0.800827 

Three Pole Response



 
 
Three Pole        
Period B[0] B[1] B[2] B[3] A[1] A[2] A[3] 

2 0.170149 0.510448 0.510448 0.170149 -0.336246 -0.026816 0.001867 
4 0.100733 0.302200 0.302200 0.100733 0.398405 -0.247486 0.043214 
6 0.050373 0.151118 0.151118 0.050373 1.080990 -0.607116 0.123145 
8 0.027610 0.082830 0.082830 0.027610 1.505892 -0.934652 0.207880 

10 0.016541 0.049622 0.049622 0.016541 1.783327 -1.200263 0.284610 
12 0.010629 0.031887 0.031887 0.010629 1.976163 -1.412114 0.350920 
14 0.007213 0.021640 0.021640 0.007213 2.117205 -1.582459 0.407548 
16 0.005111 0.015334 0.015334 0.005111 2.224560 -1.721388 0.455938 
18 0.003750 0.011250 0.011250 0.003750 2.308883 -1.836396 0.497514 
20 0.002831 0.008492 0.008492 0.002831 2.376806 -1.932941 0.533488 
22 0.002188 0.006565 0.006565 0.002188 2.432658 -2.015013 0.564848 
24 0.001726 0.005179 0.005179 0.001726 2.479376 -2.085571 0.592385 
26 0.001385 0.004156 0.004156 0.001385 2.519020 -2.146834 0.616731 
28 0.001128 0.003385 0.003385 0.001128 2.553078 -2.200500 0.638395 
30 0.000931 0.002794 0.002794 0.000931 2.582648 -2.247883 0.657784 
32 0.000778 0.002333 0.002333 0.000778 2.608560 -2.290012 0.675232 
34 0.000656 0.001967 0.001967 0.000656 2.631451 -2.327708 0.691011 
36 0.000558 0.001674 0.001674 0.000558 2.651819 -2.361631 0.705347 
38 0.000479 0.001437 0.001437 0.000479 2.670059 -2.392315 0.718425 
40 0.000414 0.001242 0.001242 0.000414 2.686486 -2.420202 0.730403 

 
 
 


