Gaussian and Other Low Lag Filters
John Ehlers

The first objective of using smoothers is to eliminate or reduce the undesired high
frequency components in the price data. Therefore, these smoothers are called low
pass filters, and they all work by averaging in one way or another. | previously
described® the design and use of Butterworth low pass filters to achieve greater filtering
than can be obtained by simple averagers. However, nothing comes for free. A higher
degree of filtering is necessarily accompanied by a larger amount of lag. That's just a
fact of life.

Since lag is the downfall of most trading indicators, leading to the failure to react to price
changes in a timely manner, a better approach to filtering is to minimize the lag and
accept whatever smoothing results. The importance of lag is demonstrated in Figure 1,
the lag of a 3 pole Butterworth filter that attenuates cycles shorter than 10 bars. We
traders think in terms of cycle periods, but filter responses are usually plotted in terms of
frequency. Frequency is the reciprocal of period. The frequency scale is normalized to
a 2 bar cycle (the Nyquist frequency for daily data).
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Figure 1. Lag of a 3 Pole Butterworth Filter with a 10 bar Period Cutoff

! John Ehlers “Poles, Zeros, and Higher Order Filters”



The low frequency lag of a Butterworth filter can be estimated from the equation
Lag = N*P / n?

Where N is the number of poles in the filter and P is the longest cycle period to be
passed through the filter. The lag story gets worse as the frequency components of the
input waveform are near the band edge of the filter. The higher frequency components
within the passband of the filter are actually delayed more than the lower frequency
components. This is exactly the opposite of what a trader desires. We have to react
faster to faster changes in the market, and so we would prefer a smoothing filter that
actually has less lag to the higher frequency components.

The use of Gaussian filters is a move toward the dual goals of reducing lag and
reducing the lag of high frequency components relative to the lag of lower frequency
components. Multipole Gaussian filters can be constructed that provide a desired
degree of smoothing. The group delay of a 3 pole Gaussian filter having a .1 cycle per
day passband is shown in Figure 2 for comparison to the delay produced by a
Butterworth filter.
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Figure 2. Lag of a 3 Pole Gaussian Filter with a 10 Bar period Cutoff

For an equivalent number of poles, the lag of a Gaussian filter is about half the lag of a
Butterworth filter. More importantly, the higher frequency components have still less lag
than the low frequency components. With Gaussian filters the lag as a function of
frequency is going in the right direction for traders. It is also true that a Gaussian filter
has about half the smoothing effectiveness as an equivalently sized Butterworth filters.



Said another way, a 4 pole Gaussian filter has about the same smoothing performance
as a 2 pole Butterworth filter. Thus, to do the same filtering job, these two filters would
have about the same low frequency lag but the Gaussian filter would preserve the
original price function with greater fidelity because the higher frequency components
within the passband would not be delayed as much as in the Butterworth filter.
Comparative filter responses of a 2 pole Butterworth filter and a 2 pole Gaussian filter,
each having a 10 bar cycle passband, is shown in Figure 3.
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Figure 3. Comparison of 2 Pole Filters shows the Gaussian filter (Cyan)has much less
lag than the Butterworth filter (Red). The Gaussian filter has less smoothing.

NUTS AND BOLTS

There is no magic to a Gaussian filter. It is just the multiple application of an
Exponential Moving Average. From my previous article? the transfer response of an
exponential moving average is

H@z) =a/(l-(1-o)ZY
So that applying the exponential moving average “N” times gives a N Pole filter
response as

H@z) =a" /(1 -1-a) ZH)N

2 ibid



At zero frequency Z'=1, so this low pass filter has unity gain. Also, the denominator
assumes the value of o at zero frequency. The corner frequency of the filter is defined
as that point where the transfer response is down by 3 dB, or .707 in amplitude. When
this occurs, we have the relationship

(1-(1-a) ZHV=1.4140" where z* = e and » = 2n/P
Crunching through the complex arithmetic, we arrive at the solution for alpha as

a = -B + SQR(B® + 2B)

Where B = (1 — cos(w)) / (1.4147N — 1)

This generalized solution for alpha can be used to compute the coefficients for any
order Gaussian filter. Recalling that the filtered output is determined by the equation
f(z) = H(z)g(2) where g(z) is the input price

If H(z) is of the form 1/(1 — (1-a) Z)" we can easily form equations for the output in
EasyLanguage metaphor because Z™ is synonymous with a one bar lag. These
equations are:

One Pole: f=ag + (1-o)f[1]

Two Poles: f=o’g + 2(1-a)f[1] - (1-0)*[2]

Three Poles: f = o°g + 3(1-a)f[1] - 3(1-0)?[2] + (1-0)%[3]

Four Poles: f=a’g + 4(1-0)f[1] - 6(1-0)*f[2] + 4(1-0)*f[3] - (1-0)*f[4]

Etc.

GAUSSIAN FILTER TABLES

It is often easier to go to a lookup table to get filter coefficients rather than uniquely
calculate the coefficients each time they are used. In the following tables, the notation
is that B is used with the price data and A is used with the previously calculated filter
output [N] bars ago. | hope these tables at the end of the article make it easier to use
higher order filters.

REMOVING LAG TECHNIQUES

The equation for a simple 3 bar moving average is

f =.25*g + .5%g[1] + .25*g[2]
where each of the g’s corresponds to the price. In terms of navigation, the g values are
the values of position to compute a smoothed estimate of position. If we take a page
from the book on Kalman filters and introduce a velocity term in addition to the position
term we can arrive at a better smoothed estimate. So, in the above equation, let each
of the price values become g + (g — g[1]) = 2*g — g[1]. The three bar moving average
equation then becomes

f = .5*g +.75¢g[1] + 0 -.25*g[3]
Guaranteed you will not get much filtering out of this filter. In fact, you will probably get
some overshoot. Its strength is that you can filter one of the Gaussian filter smoothed
results to further reduce the higher frequency lag. Remember, that by decreasing the
lag you are also decreasing the amount of smoothing that you can obtain.



One Pole (EMA)

Period

B[O] Al1]
0.828427 0.171573
0.732051 0.267949
0.618034 0.381966
0.526602 0.473398
0.455887 0.544113
0.400720 0.599280
0.356896 0.643104
0.321416 0.678584
0.292186 0.707814
0.267730 0.732270
0.246990 0.753010
0.229192 0.770808
0.213760 0.786240
0.200256 0.799744
0.188343 0.811657
0.177759 0.822241
0.168294 0.831706
0.159780 0.840220
0.152082 0.847918
0.145089 0.854911



Two Pole
Period

B[O]

0.834615
0.722959
0.578300
0.457577
0.365017
0.295336
0.242632
0.202250
0.170835
0.146017
0.126125
0.109966
0.096680
0.085633
0.076357
0.068496
0.061779
0.055996
0.050984
0.046612

Al1]

0.172854
0.299460
0.479080
0.647112
0.791668
0.913103
1.014847
1.100556
1.173357
1.235757
1.289719
1.336777
1.378133
1.414738
1.447346
1.476567
1.502894
1.526729
1.548408
1.568205

Al2]

-0.007470
-0.022419
-0.057379
-0.104688
-0.156684
-0.208439
-0.257479
-0.302806
-0.344192
-0.381774
-0.415844
-0.446743
-0.474813
-0.500371
-0.523703
-0.545063
-0.564672
-0.582726
-0.599392
-0.614817



Three Pole

Period

B[O]

0.836701
0.718670
0.558792
0.422292
0.318295
0.242068
0.186612
0.146016
0.115940
0.093340
0.076111
0.062791
0.052354
0.044075
0.037432
0.032045
0.027635
0.023991
0.020956
0.018409

Al1]

0.173094
0.312814
0.529009
0.749259
0.951680
1.130321
1.285644
1.420251
1.537154
1.639147
1.728632
1.807607
1.877714
1.940297
1.996460
2.047111
2.093000
2.134754
2.172895
2.207865

Al2]

-0.009987
-0.032617
-0.093283
-0.187130
-0.301899
-0.425875
-0.550960
-0.672371
-0.787614
-0.895601
-0.996056
-1.089148
-1.175270
-1.254918
-1.328618
-1.396887
-1.460217
-1.519058
-1.573824
-1.624889

A[3]

0.000192
0.001134
0.005483
0.015579
0.031923
0.053486
0.078704
0.106104
0.134520
0.163114
0.191313
0.218750
0.245202
0.270546
0.294726
0.317731
0.339582
0.360313
0.379973
0.398615



Four
Pole
Period

B[O]

0.837747
0.716200
0.547128
0.400596
0.289459
0.209659
0.153408
0.113779
0.085632
0.065397
0.050648
0.039744
0.031571
0.025363
0.020589
0.016875
0.013953
0.011632
0.009770
0.008263

All]

0.173178
0.320247
0.559812
0.817734
1.066023
1.293310
1.496649
1.676861
1.836187
1.977213
2.102418
2.214012
2.313903
2.403709
2.484797
2.558316
2.625237
2.686378
2.742435
2.794000

A2]

-0.011247
-0.038459
-0.117521
-0.250758
-0.426152
-0.627244
-0.839984
-1.054449
-1.264344
-1.466015
-1.657560
-1.838193
-2.007804
-2.166681
-2.315331
-2.454368
-2.584450
-2.706235
-2.820356
-2.927413

Al3]

0.000325
0.002053
0.010965
0.034176
0.075715
0.135204
0.209527
0.294694
0.386929
0.483104
0.580814
0.678297
0.774311
0.868012
0.958854
1.046508
1.130799
1.211662
1.289107
1.363199

Al4]

0.000004
0.000041
0.000384
0.001747
0.005045
0.010929
0.019599
0.030885
0.044405
0.059700
0.076320
0.093860
0.111980
0.130403
0.148910
0.167331
0.185538
0.203436
0.220956
0.238049



