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The performance of some, but not all, indicators can be greatly enhanced by truncation.  
There are two fundamentally different types of digital filters, FIR and IIR.  FIR stands for 
Finite Impulse Response, which means a fixed window of data is used to calculate a point 
of the filter output.  That window slides across the data, and the output points are 
connected to provide the indicator.  A Simple Moving Average (SMA) is an example of 
such a filter.  RSI and Stochastic are examples of indicators that use this principle.  FIR 
filters and indicators can only be degraded by truncation.  IIR stands for Infinite Impulse 
Response, where the computation of the filter or indicator depends on a previous 
calculation of that filter.  The Exponential Moving Average (EMA), and consequently the 
MACD and other indicators, are IIR types.  Of course, the computation of an IIR filter 
does not extend to infinity.  The filter computation can only start at the beginning of the 
data being used. 
 
Therein lies the problem.   The answer your get from an IIR filter will be different 
depending on your data length.  If the data stream is sufficiently long the answer may 
be the same for all practical purposes, but it will be different nonetheless.  So, initialization 
is one problem that is resolved by truncating the indicators.  The memory of IIR indicators 
can also impact performance because a major data disturbance can cause the transient 
response of the indicator to ring like a bell, using that data disturbance in its output long 
after the event has occurred.  This is particularly important because market data is 
nonstationary. 
 
IIR filters are handy for a trader because one does not have to accept the group delay of 
a FIR filter, which is typically about half the length of the filter itself.  I will first describe 
several ways to perform truncation and then I will discuss its performance impact. 
 
An EMA depends on previous calculated values.  In EasyLanguage notation, and EMA is: 

 Output = *Input + (1-)*Output[1]; 
  Where Output[1] means the filter output one bar ago 

  And where  is the EMA constant (less than 1) 

Of course, the output one bar ago requires its previous output two bars ago, and so on.  
Thus the required history goes back to infinity.  The EMA equation can be rewritten as: 

 (Output – (1-)*Output[1]) = *Input 
If I change notation at let Z-1 signify one bar of delay, the equation is rewritten as: 

 Output*(1 – (1-)*Z-1) = a*Input 

The ratio of Output to Input is the transfer response of the filter, and so the transfer 
response of the filter, H, can be written as: 

 H =  / (1 – (1-)*Z-1) 

Just to simplify notation, let (1-) = c.  The equation then becomes 

 H =  / (1 – c*Z-1) 



 
The denominator of the transfer response carries the requirement for a calculation into 
the infinite past.  However if we create an infinite series by dividing the dominator into 
the numerator by long division, the equation becomes: 
 

 H = *(1 + c*Z-1 + c2*Z-2+ c3*Z-3 + c4*Z-4 + c5*Z-5 +  . . . . . . . ) 

Truncation of this equation is easy, because we can just stop using the higher power 

terms at any power we choose.  Since (1-) is a number less that unity, we can estimate 
the desired length of the truncation by computing when the coefficients no longer have 
an impact on the transfer response.  The EasyLanguage code fragment to compute a 
truncated EMA of a fixed length as a summation of terms is: 

 Output = 0;  
 For count = 0 to Length Begin 
  Output = Output + Power(c, count)*Input[count]; 
 End; 
 Output = a*Output; 

One of the beauties of computers is that we can just brute force grind through calculations 
without resorting to mathematical sleight of hand tricks.  This gives us more flexibility in 
easily truncating higher order filters.  However, we need to have a little greater 
understanding of computer coding.  In the example above, the terms Input and Output 
are variables.  “Under the covers” of EasyLanguage, all variables are indexed to the 
current bar.  Therefore counting backwards from the current bar is a snap.  However, 
number crunching backwards requires multiple indexing, and therefore variables are not 
useful.  Instead, we need to use arrays and do our own indexing.  With Output as an 
array, the code fragment to brute force crunch a truncated EMA is : 

 Output[Length + 1] = Input[Length];  //initialization 
 For count = Length DownTo 1 Begin 
  Output[count] = a*Input[count] + (1-a)*Output[count + 1]; 
 End; 
 EMA = Output[1];  //converts array to a variable 

A Bandpass filter is one I am fond of using because it enables me to winnow out the 
tradeable cycles in the market data.  The Bandpass filter is an IIR type, and I use the 
brute force method of truncating this more complex filter.  In Code Listing 1 I give the 
EasyLanguage code to compute a standard Bandpass filter in terms of its center period 
and percentage bandwidth.  The standard computation as an IIR filter uses the computed 
values of the Bandpass filter both one bar ago and two bars ago.  In the truncated version 
I use the array Trunc rather than an indexed variable.  I crunch all the historical values 
as well as the current value for the array.  I then convert the current value of the filter 
to a variable so I can plot it just like the standard computation. 



In Figure 1 I show the Standard and Truncated Bandpass filters applied to daily bars of 
SPY for roughly the calendar year 2019.  In both cases the center period of the filter is 
20 bars and have a 10 percent of the center period bandwidth.  The standard Bandpass 
filter is in red and the truncated Bandpass filter is in Blue.  The truncated Bandpass filter 
only uses 10 bars of data in its computation at every bar across the chart. 

The big price dip in December of 2018 certainly bangs the standard Bandpass filter and 
causes it to ring out like a bell for at least 5 months.  On the other hand, the truncated 
Bandpass filter has a dampened response to that major event.  It further accurately 
describes the price action by staying above zero during the uptrend into early May.  
During this time the cyclic price action is also accurately portrayed.  For example, the 
price swing peak in the third week of March is accurately reflected in the peak of the 
truncated Bandpass filter, whereas the standard Bandpass filter is dead wrong at a cyclic 
valley at this time.  Similarly, the truncated filter is above zero during the fourth quarter 
uptrend.  The cyclic swings during August and September are also accurately reflected in 
the truncated indicator.  In fact, you can track the cyclic swings across the entire chart 
and see at a glance how they correlate with the price movements. 

 

 

Figure 1.  A Truncated Bandpass Filter is a Better Indicator of Price Action 

 

 

 

 



In summary, truncating IIR filters solves two problems associated with IIR filters.  First, 
initialization errors are eliminated.  Second, dampened transient responses of the 
truncated filters provide a more reliable indication of the current price action. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



Code Listing 1.  Standard and Truncated Bandpass Filters 

{ 
     BandPass Filter and Truncated Bandpass Filter 
     (C) 2005-2020  John F. Ehlers 
} 
 
Inputs: 
 Period(20), 
 Bandwidth(.1), 
 Length(10); //must be less than 98 due to array size  
  
Vars: 
 L1(0), G1(0), S1(0), count(0), 
 BP(0), BPT(0); 
  
Arrays: 
 Trunc[100](0); 
 
//Standard Bandpass 
L1 = Cosine(360 / Period); 
G1 = Cosine(Bandwidth*360 / Period); 
S1 = 1 / G1 - SquareRoot( 1 / (G1*G1) - 1); 
BP = .5*(1 - S1)*(Close - Close[2]) + L1*(1 + S1)*BP[1] - S1*BP[2]; 
If CurrentBar <= 3 Then BP = 0; 
 
//Truncated Bandpass 
Trunc[Length + 2] = 0; 
Trunc[Length + 1] = 0; 
For count = Length DownTo 1 Begin 
 Trunc[count] = .5*(1 - S1)*(Close[count - 1] - Close[count + 1]) + L1*(1 +                   
S1)*Trunc[count + 1] - S1*Trunc[count + 2]; 
End; 
BPT = Trunc[1];  //convert to a variable 
 
Plot1(BP); 
Plot4(0); 
Plot2(BPT); 

 

  

  



 
 

 


